

Acknowledgement
We want to express a big thank you to everyone who has helped us from the earliest draft to the
published first edition of this e-book. A special thanks to our lovely colleagues at 84codes and to
all of our remote-based tech friends. Finally, a huge thank you to all of our CloudKarafka users
for your feedback and continued support.

We’d love to hear from you!
We encourage you to email us any comments that you might have about the e-book. Feedback
is crucial for the next edition so feel free to tell us what you think should or shouldn't be
included. If you have an application that is using CloudKarafka or a user story that you would
like to share, please send us an email!

Book version: 1.1
Author: Elin Vinka, Lovisa Johansson
Email: elin@84codes.com, lovisa@84codes.com
Published: 2019-09-28
Graphics: Elin Vinka, Daniel Marklund

mailto:elin@84codes.com

This book is for anyone who has heard about Apache Kafka and is curious to learn more but
keeps getting lost in advanced documentation sites around the Apache Kafka community. We

feel you, we hear you and we want to say:

Look no further! Give this a read and we look forward to meeting you in the community chats in
the future!

“The expert at anything was once a beginner.” - Helen Hayes

Introduction 7

Part 1: Apache Kafka Beginner 8

What is Apache Kafka? 9
Topics and Data Streams 10
Partition 10

Replication - the power of copying and reproducing 12
The function of “leaders” and the election of new leaders 13
Consumers and consumer groups 15
Apache Kafka Example 17

Website activity tracking 17

Example usage of Apache Kafka 19
Message Service 19
Real-time event stream processing 20
Log aggregation 20
Data Ingestion 20
Commit log service 20
Event sourcing 21

Get started with Apache Kafka 21
Hosted free Apache Kafka instance at CloudKarafka 21

Secure connection via certificates 22
Secure connection via SASL/SCRAM 22
Secure connection via VPC 23

Create a topic 23
CloudKarafka MGMT 24
Publish and subscribe 25
Apache Kafka and Ruby 26

Part 2 - Performance optimization for Apache Kafka 29

Performance optimization for Apache Kafka - Producers 30
Ack-value 30

How to set the Apache Kafka ack-value 31
What does In-Sync really mean? 31

What is the ISR? 31
What is ISR for? 31

Batch messages in Apache Kafka 32
Compression of large records 32

Apache Kafka client libraries 32

Performance optimization for Apache Kafka - Brokers 33
Topics and Partitions 33

More partitions - higher throughput 33
Do not set up too many partitions 33
The balance between cores and consumers 34

Kafka Broker 34
Minimum in-sync replicas 34
Partition load between brokers 34

Partition distribution warning in the CloudKarafka MGMT 35
Do not hardcode partitions 35
Number of partitions 35
Default created topic 35
Default retention period 35

Record order in Apache Kafka 36
Number of Zookeepers 36
Apache Kafka server type 36

Performance optimization for Apache Kafka - Consumers 37
Consumer Connections 37
Number of consumers 38

Apache Kafka and server concepts 39
Log 39
Record or Message 39
Broker 39
Topics 39
Retention period 39
Producer, Producer API 39
Consumer, Consumer API 40
Partition 40
Offset 40
Consumer group 40
ZooKeeper 40
Instance (“As in a CloudKarafka instance”) 40
Replication, replicas 40

Introduction
The interest in Apache Kafka is higher than ever. Companies from a wide spectrum of industries
are confronting a time where they need to rethink their infrastructure and be able to keep up
with the expectations of today. Not only do they have to take customers' needs into
consideration, who are demanding fast and reliable services, but the very core of a company
also needs to adopt a paradigm shift of building scalable and flexible solutions that are ready to
handle data on the spot. Because of this, eyes are turning towards Kafka for good reason.

Apache Kafka, which is written in Scala and Java, is a creation of former LinkedIn data
engineers and was handed over to the open-source community in early 2011 as a highly
scalable messaging system. Today, Apache Kafka is a part of Confluent Stream Platform and
handles trillions of events every day. Apache Kafka has established itself on the market with
many trusted companies waving the Kafka banner.

Today we're surrounded by data everywhere and the amount of data has increased a lot in a
short matter of time. All of a sudden; everybody owns a smart home, a smart car and a coffee
maker that senses your mood and makes you a cup of coffee if needed (I WISH!).

Data and logs that surround us need to be processed, reprocessed, analyzed and handled.
Often in real-time. That’s what makes the core of the web, IoT and cloud-based living of today.
And that's why Apache Kafka has come to play a significant role in the message streaming
landscape.

The key design principles of Kafka were formed based on this growing need for high throughput,
easily scalable architectures that provide the ability to store, process and reprocess streaming
data.

This book might be your first introduction to Kafka or maybe you just want to refresh your
knowledge bank. Maybe your team of developers are pushing for this Kafka-thing and you need
to find something that gives you a quick understanding to be able to say GO! or NO!

Either way, we hope you like this book and that you, after reading it, is feeling more secure in
the Kafka landscape.

Part 1: Apache Kafka Beginner
As mentioned, Apache Kafka is on the rise since the world is approaching a new way of seeing,
living and handling data. In Part 1, Apache Kafka is described from a beginner perspective. It
gives a brief understanding of messaging and distributed logs and defines important concepts
along the way. Part 1 is also a walkthrough of how to set up a connection to an Apache Kafka
cluster and how to publish and subscribe records from this cluster.

Let’s dig in...

This image shows the very foundation of Apache Kafka and its components.

Producer - Cluster - Broker - Topic - Partition and Consumer

What is Apache Kafka?

Apache Kafka is a publish-subscribe (pub-sub) message system that allows messages (also
called records) to be sent between processes, applications, and servers. Simply said - Kafka
stores streams of records.

A record can include any kind of information. It could, for example, have information about an
event that has happened on a website or could be a simple text message that triggers an event
so another application may connect to the system and process or reprocess it.

Unlike most messaging systems, the message queue in Kafka (also called a log) is persistent.
The data sent is stored until a specified retention period has passed by. Noticeable for Apache
Kafka is that records are not deleted when consumed.

An Apache Kafka cluster consists of a chosen number of brokers/servers (also called nodes).
Apache Kafka itself is storing streams of records. A record is data containing a key, value and
timestamp sent from a producer. The producer publishes records on one or more topics. You
can think of a topic as a category to where, applications can add, process and reprocess
records (data). Consumers can then subscribe to one or more topics and process the stream of
records.

Kafka is often used when building applications and systems in need of real-time streaming.

Topics and Data Streams
All Kafka records are organized into topics. Topics are the categories in the Apache Kafka
broker to where records are published. Data within a record can be of various types, such as
String or JSON. The records are written to a specific topic by a producer and subscribed from a
specific topic by a consumer.

All Kafka records are organized into topics. Topics are the categories in the Apache Kafka
broker where records are published. Data within a record can consist of various types, such as
String or JSON. The records are written to a specific topic by a producer and subscribed from a
specific topic by a consumer.

When the record gets consumed by the consumer, the consumer will start processing it.
Consumers can consume records at a different pace, all depending on how they are configured.

Topics are configured with a retention policy, either a period of time or a size limit. The record
remains in the topic until the retention period/size limit is exceeded.

Partition
Kafka topics are divided into partitions which contain records in an unchangeable sequence. A
partition is also known as a commit log. Partitions allow you to parallelize a topic by splitting the
data into a topic across multiple nodes.

Each record in a partition is assigned and identified by its unique offset. This offset points to the
record in a partition. Incoming records are appended at the end of a partition. The consumer
then maintains the offset to keep track of the next record to read. Kafka can maintain durability
by replicating the messages to different brokers (nodes).

A topic can have multiple partitions. This allows multiple consumers to read from a topic in
parallel. The producer decides which topic and partition the message should be placed on.

Replication - the power of copying and reproducing
In Kafka, replication is implemented at the partition level. The redundant unit of a topic partition
is called a replica. A follower that is in-sync is called an in-sync replica. If a partition leader fails,
a new in-sync replica is selected as the new leader. Each partition usually has one or more
replicas meaning that partitions contain records that are replicated over a chosen number of
Kafka brokers in the cluster.

As we can see in the image above, the partitions in the “click topic” are replicated to

Kafka Broker 2 and Kafka Broker 3.

It’s possible for the producer to attach a key to the records and tell which partition the record
should go to. These keys can be useful if you wish for a strong order, in case you are
developing something that requires, for example, a unique id. When attaching a key to these
records, it will ensure that records with the same key will arrive at the same partition.

The function of “leaders” and the election of new leaders
This next part shows how records can be collaterally written to and read from, and also what
makes Kafka fault-tolerant; meaning that your system continues to work at a level of
satisfaction, even in the presence of failures.

One partition in a broker is marked as “leader” for the partition, and the others are marked as
followers. The leader is a partition replica. Each broker can host multiple leaders and follower
replicas. The leader controls the read-and-writes for the partition, whereas the followers
replicate the data. If the partition leader fails, one of the followers become a new leader by

default. Zookeeper is used for leader election. We will leave Zookeeper for now, and get back to
Zookeeper in Part 2.

Broker 1 in the image is the leader for Partition 0

Broker 2 in the image is acting as the leader for Partition 1

The leader appends the records to its commit log and increments its record offset. Kafka then
exposes the record to the consumer(s) after it has been received and committed.

When a record is fully committed depends on the producer ack-value configuration and in-sync
replicas configuration. More about those topics can be found in Part 2.

Consumers and consumer groups
Consumers can read messages starting from a specific offset and are allowed to read from any
offset point they choose. This allows consumers to join the broker at any point in time.

Consumers can join a group called a consumer group. A consumer group includes the set of
consumer processes that are subscribing to a specific topic. Each consumer in the group is
assigned a set of partitions to consume from. This allows Kafka a very high record processing
throughput. Consumers will not read the same records and will subscribe to different subsets of
the partitions in the topic. Kafka keeps track of all consumers, and can, therefore, guarantee
that a message is only read by a single consumer in the group.

Kafka can support a large number of consumers and retain large amounts of data with very little
overhead. The number of partitions impacts the maximum parallelism of consumers as you
should not have more consumers than partitions.

The consumers will never overload themselves with lots of data or lose any data since all
records are being queued up in Kafka. If the consumer is behind while processing records, there
is the option to catch up and get back to handle data in real-time.

Apache Kafka Example

Website activity tracking

According to the creators of Apache Kafka, the original use case for Kafka was to track website
activity - including page views, searches, uploads or other actions users may take. This kind of
activity tracking often requires a very high volume of throughput, since messages are generated
for each action and for each user.

We will now explain Apache Kafka with an example by using the concept of a basic website.

In this example, users can: click around, sign in, write blog articles,

upload images to articles and publish those articles.

When an event happens on the website, for example, when someone logs in, presses a button
or when someone uploads an image to the article, a tracking event is triggered. Information
about the event (a record) is placed into a specified Kafka topic. In this example, there is one
topic named "click" and one named "upload".

Partitioning is based on the user id. A user with id 0 is mapped to partition 0, and a user with id
1 is mapped to partition 1, etc. The "click" topic will be split up into three partitions (three users)
on two different machines.

Example:

1. A user with user-id 0 clicks on a button on the website.
2. The web application publishes the record to topic "click" and partition 0.
3. The message is appended to its commit log and the message offset is incremented.
4. Broker 1, which is the leader of partition 0, replicated the record to its followers, broker 2

and broker 3.
5. The consumer can subscribe to messages from the click-topic.

The consumer that handles the message is now able to show monitoring usage in real-time or
can replay previously consumed messages by setting the offset to a previous offset.

Example usage of Apache Kafka
Kafka is a great tool for delivering messages between producers and consumers, plus the
optional topic durability allows you to store your messages permanently. Forever if you’d like!
There are a lot of Kafka use cases out there. In this chapter, we're listing the most common
ones.

These images show a number of producers and consumers that might write and subscribe to
records to and from the Kafka Broker. This shows a variety of use cases for Apache Kafka and

how it can be used as a part of an it-architecture of this kind.

Message Service
Kafka can work as a replacement for more traditional message brokers, like RabbitMQ. Millions
of messages can be sent and received in real-time. Messaging decouples your processes and
creates a highly scalable system. Instead of building one large application, it’s beneficial to
decouple different parts of your application and let communication between them be handled

asynchronously through messages (and this is what we refer to “monolith vs. microservice
based architecture”).

This way, different parts of your application can evolve independently, be written in different
languages and/or be maintained by separated developer teams. Kafka has built-in partitioning,
replication, and fault-tolerance that makes it a good solution for large-scale message processing
applications.

Real-time event stream processing
Kafka can be used to aggregate and process events in real-time, such as user activity data, like
clicks, navigation, and search forms from different websites of an organization. These activities
can be sent to real-time monitoring systems, real-time analytics platforms and or to mass
storage (like S3) for offline/batch processing.

Events can also be processed and written back to other topics in real-time using the Kafka
Streams API. This is a library that can be used to create streaming applications that combine
and write to multiple streams (topics) forming simple or complex processing topologies.

Log aggregation
A lot of people today are using Kafka as a log solution. Log aggregation is about finding an
efficient way to gather the entries from your various log files into one single, organized place.

Data Ingestion
Today data is being used for more uses and companies are gathering data in larger quantities
and at higher velocities. Multiple technologies and platforms may be leveraged to gain insights
into data, provide search, auditing and any number of uses. Kafka’s ability to scale makes it
perfect as the front-line for data ingestion. This way the various producers of data only need to
send their data to a single place while a host of backend services can consume the data as they
wish. All the major analytics, search and storage systems have integrations with Kafka, making
it the perfect ingestion technology.

Commit log service
A commit log is about recording the changes made to something so that it can be replayed later.
Kafka can be used as a commit log since all data is stored in the topic until the configured
retention has passed.

Event sourcing
Event sourcing is an architectural style where domain events are treated as first-class citizens
and the primary source of truth of a system. In today’s polyglot persistence world, event
sourcing allows multiple data stores such as RDBMS, search engines, caches, etc., to stay
in-sync as they all are fed by the same stream of domain events. The current state for any entity
can be reconstructed by replaying its events.

Kafka makes a great platform for event sourcing because it stores all records as a time-ordered
sequence and provides the necessary ordering guarantees that an event store needs.

Get started with Apache Kafka
NOTE: To be able to follow this guide you need to SET UP a Kafka cluster at CloudKarafka, or
DOWNLOAD and install Apache Kafka and Zookeeper on your own servers.

Hosted free Apache Kafka instance at CloudKarafka

CloudKarafka is a hosted Apache Kafka solution that automates every part of the setup,
meaning that all you need to do is sign up for an account and create your broker. You can select
which datacenter you want to have your broker in, and the number of nodes in your setup.

A big benefit of using CloudKarafka is that you don’t need to set up and install Kafka, care about
cluster handling or ZooKeeper. CloudKarafka can be used for free with the plan Developer
Duck. Go to the plan page and sign up for any plan and create an instance.

When your instance is created, click on the details. Before you start coding you need to ensure
that you can set up a secure connection. You can download certificates, use SASL/SCRAM or
set up VPC peering to your AWS VPC.

This tutorial shows how to get started with the free plan, Developer Duck, since everyone
should be able to complete this guide. If you are going to set up a dedicated instance, we
recommend you to have a look here.

You need to connect via SASL/SCRAM or Certificates to shared (and free) plans. VPC is
another option that is only available for dedicated plans.

https://www.cloudkarafka.com/
https://www.cloudkarafka.com/plans.html
https://www.cloudkarafka.com/plans.html
https://www.cloudkarafka.com/docs.html
https://www.cloudkarafka.com/docs.html

Secure connection via certificates
Get started by downloading the certificates (connection environment variables) for the instance.
You can find the cert download button from the instances overview page. It is named: Certs as
seen in the image below. Press the “Create New Instance” button and save the given .env file
into your project. The file contains environmental variables that you need to use in your project.

Secure connection via SASL/SCRAM
You can also authenticate using SASL/SCRAM. When using SASL/SCRAM you only need to
locate the username and password on the Details page and add them in your code.

https://github.com/CloudKarafka
https://github.com/CloudKarafka

Secure connection via VPC
VPC information can be found by opening up the VPC Peering tab in the CloudKarafka control
panel. You will find peering information on the details page for your instance. CloudKarafka will
request to set up a VPC connection as soon as you have saved your VPC peering details. After
that, you will need to accept the VPC peering connection request from us. The request can be
accepted from the Amazon VPC console at https://console.aws.amazon.com/vpc/. Please note
that the subnet given must be the same as your VPC subnet.

Create a topic
You can create a topic by opening the Topic view. You are free to decide partitions, replicas,
retention byte and retention time in milliseconds.

In this example, two topics are created, 0c8stdz3-click and 0c8stdz3-update. Those are
symbolizing the topics from the example in the previous chapters, where we have partitioning
based on the user id. A user with id 0 is mapped to partition 0, and a user with id 1 is mapped to
partition 1, etc. The 0c8stdz3-click topic is split up into three partitions (three users) on two
different machines.

CloudKarafka MGMT
CloudKafka MGMT interface is enabled by default on all clusters, including shared clusters
(developer duck). From here, topics, consumers, retention period, users and permissions can be
handled - created, deleted and listed in the browser and you can monitor message rates, as well
as send or receive messages manually.

Publish and subscribe
To be able to communicate with Apache Kafka, you need a library or framework that
understands Apache Kafka. In other words, you need to download the client-library/framework
for the programming language that you intend to use for your applications.

A client-library is an “applications programming interface” (API) for use in writing client
applications. The producer and consumer APIs have several methods that can be used, in this
case, to communicate with Apache Kafka. The methods should be used when you, for example,
connect to the Kafka broker (using the given parameters, a hostname for instance) or when you
publish a message to a topic. Both consumers and producers can be written in any language
that has a Kafka client written for it.

The consumer can subscribe from the latest offset, or it can replay previously subscribed
records by setting the offset to an earlier one.

Apache Kafka and Ruby
This tutorial contains step-by-step instructions that show how to set up a secure connection,
how to publish to a topic, and how to subscribe from a topic in Apache Kafka with Ruby.

Once you have your Apache Kafka instance, you need to download the API for Ruby. You can
find the complete ruby code example on GitHub:
https://github.com/CloudKarafka/ruby-kafka-example

The sample project contains everything you need to get started with producing and consuming
records with Kafka.

https://www.cloudkarafka.com/blog/2016-11-30-part1-kafka-for-beginners-what-is-apache-kafka.html#setup-apache-kafka-instance
https://github.com/CloudKarafka/ruby-kafka-example

Producer code
require 'bundler/setup'
require 'rdkafka'

config = {
 :"bootstrap.servers" => ENV['CLOUDKARAFKA_BROKERS'],
 :"group.id" => "cloudkarafka-example",
 :"sasl.username" => ENV['CLOUDKARAFKA_USERNAME'],
 :"sasl.password" => ENV['CLOUDKARAFKA_PASSWORD'],
 :"security.protocol" => "SASL_SSL",
 :"sasl.mechanisms" => "SCRAM-SHA-256"
}
topic = "#{ENV['CLOUDKARAFKA_TOPIC_PREFIX']}test"

rdkafka = Rdkafka::Config.new(config)
producer = rdkafka.producer

100.times do |i|
 puts "Producing message #{i}"
 producer.produce(
 topic: topic,
 payload: "Payload #{i}",
 key: "Key #{i}"
).wait
end

Consumer code
require 'bundler/setup'
require 'rdkafka'

config = {
 :"bootstrap.servers" => ENV['CLOUDKARAFKA_BROKERS'],
 :"group.id" => "cloudkarafka-example",
 :"sasl.username" => ENV['CLOUDKARAFKA_USERNAME'],
 :"sasl.password" => ENV['CLOUDKARAFKA_PASSWORD'],
 :"security.protocol" => "SASL_SSL",
 :"sasl.mechanisms" => "SCRAM-SHA-256"
}
topic = "#{ENV['CLOUDKARAFKA_TOPIC_PREFIX']}test"

rdkafka = Rdkafka::Config.new(config)
consumer = rdkafka.consumer
consumer.subscribe(topic)

begin
 consumer.each do |message|

 puts "Message received: #{message}"
 end
rescue Rdkafka::RdkafkaError => e
 retry if e.is_partition_eof?
 raise
end

Part 2 - Performance optimization for Apache Kafka

Part 2 will guide you in how to best tune your Kafka Cluster to meet your
high-performance needs. You will find important tips, broker configurations, common
errors and most importantly - we will give you our best recommendations for
optimization of your Apache Kafka Cluster.

Performance optimization for Apache Kafka includes optimization tips for Kafka, divided up
between Producers, Brokers, and Consumers.

https://www.cloudkarafka.com/blog/2018-09-12-performance-optimization-apache-kafka-consumers-cloudkarafka.html

Performance optimization for Apache Kafka -
Producers

The producer in Kafka is responsible for writing the data to the Kafka Brokers and can be seen
as the trigger in the Apache Kafka workflow. The producer can be optimized in various ways to
meet the needs of your Apache Kafka setup. By refining your producer setup, you can avoid
common errors and ensure your configuration meets your expectations.

Ack-value
An acknowledgment (ACK) is a signal passed between communicating processes to signify
acknowledgment, i.e., receipt of the message sent. The ack-value is a producer configuration
parameter in Apache Kafka and can be set to the following values:

acks=0

The producer never waits for an ack from the broker when the ack value is set to 0. No
guarantee can be made that the broker has received the message. The producer doesn’t try to
send the record again since the producer never knows that the record was lost. This setting
provides lower latency and higher throughput at the cost of much higher risk of message loss.

acks=1

When setting the ack value to 1, the producer gets an ack after the leader has received the
record. The leader will write the record to its log but will respond without awaiting a full
acknowledgment from all followers. The message will be lost only if the leader fails immediately
after acknowledging the record, but before the followers have replicated it. This setting is the
middle ground for latency, throughput, and durability. It is slower but more durable than acks=0.

acks=all

Setting the ack value to all means that the producer gets an ack when all in-sync replicas have
received the record. The leader will wait for the full set of in-sync replicas to acknowledge the
record. This means that it takes a longer time to send a message with ack value all, but it gives
the strongest message durability.

Read more about ack-values in Kafka here.

How to set the Apache Kafka ack-value
For the highest throughput set the value to 0. For no data loss, set the ack-value to all (or -1).
For high, but not maximum durability and for high but not maximum throughput - set the
ack-value to 1. Ack-value 1 can be seen as an intermediate between both of the above.

What does In-Sync really mean?
Kafka considers that a record is committed when all replicas in the In-Sync Replica set (ISR)
have confirmed that they have written the record to disk. The acks=all setting requests that an
ack is sent once all in-sync replicas (ISR) have the record. But what is the ISR and what is it
for?

What is the ISR?
The ISR is simply all the replicas of a partition that are "in-sync" with the leader. The definition of
"in-sync" depends on the topic configuration, but by default, it means that a replica is or has
been fully caught up with the leader in the last 10 seconds. The setting for this time period is:
replica.lag.time.max.ms and has a server default which can be overridden on a per topic basis.

At a minimum the, ISR will consist of the leader replica and any additional follower replicas that
are also considered in-sync. Followers replicate data from the leader to themselves by sending
Fetch Requests periodically, by default every 500ms.

If a follower fails, then it will cease sending fetch requests and after the default, 10 seconds will
be removed from the ISR. Likewise, if a follower slows down, perhaps a network related issue or
constrained server resources, then as soon as it has been lagging behind the leader for more
than 10 seconds it is removed from the ISR.

What is ISR for?
The ISR acts as a tradeoff between safety and latency.

As a producer, if we really didn't want to lose a message, we'd make sure that the message has
been replicated to all replicas before receiving an acknowledgment. But this is problematic as
the loss or slowdown of a single replica could cause a partition to become unavailable or add

http://kafka.apache.org/documentation.html#producerconfigs
http://kafka.apache.org/documentation.html#producerconfigs

extremely high latencies. So the goal to be able to tolerate one or more replicas being lost or
being very slow.

When a producer uses the "all" value for the acks setting. It is saying: only give me an
acknowledgment once all in-sync replicas have the message. If a replica has failed or is being
really slow, it will not be part of the ISR and will not cause unavailability or high latency, and we
still, normally, get redundancy of our message.

So the ISR exists to balance safety with availability and latency. But it does have one surprising
Achilles heel. If all followers are going slow, then the ISR might only consist of the leader. So an
acks=all message might get acknowledged when only a single replica (the leader) has it. This
leaves the message vulnerable to being lost. This is where the min-insync.replicas broker/topic
configuration helps. If it is set it to 2 for example, then if the ISR does shrink to one replica, then
the incoming messages are rejected. It acts as a safety measure for when we care deeply about
avoiding message loss.

Batch messages in Apache Kafka
Records can be sent together in a specific way as groups, called a batch. The batch can then
be sent when the specified criteria for the batch is met; when the number of records for the
batch has reached a certain number or after a given amount of time. Sending batches of
messages is recommended since it will increase the throughput.

Always keep a good balance between building up batches and the sending rate. A small batch
might give low throughput and lots of overhead. However, a small batch is still better than not
using batches at all. A batch that’s too large might take a long time to collect, keeping
consumers idling. This depends on the use case too. If you have a real-time application make
sure you don't have large batches.

Compression of large records
The producer can compress records and the consumer can decompress them. We recommend
that you compress large records to reduce the disk footprint and also the footprint on the wire.
It’s not a good idea to send large files through Kafka. Put large files on shared storage instead
of sending it through Kafka. Read more about compression in Apache Kafka here.

Apache Kafka client libraries
The Protocol for Apache Kafka changes a lot. It’s therefore hard for clients to keep up to date
with all of these changes. Always make sure to use Apache Kafka clients that are up to date.
The Java client is always the feature-complete client. All demos on the CloudKarafka
documentation pages are wrappers around librdkafka.

https://cwiki.apache.org/confluence/display/KAFKA/Compression
https://cwiki.apache.org/confluence/display/KAFKA/Compression
https://www.cloudkarafka.com/docs/java.html
https://www.cloudkarafka.com/docs/index.html
https://www.cloudkarafka.com/docs-java.html

Performance optimization for Apache Kafka -
Brokers

By refining the broker setup, you can avoid common errors and ensure your configuration meets
your expectations.

Topics and Partitions
This section describes how to set up topics and partitions.

More partitions - higher throughput
One partition is only able to handle one consumer. The number of consumers should, therefore,
be equal to the number of partitions. Multiple partitions allow for multiple consumers to read
from a topic in parallel. This creates a more scalable system. With more partitions, it’s possible
to handle a larger throughput since all consumers can work in parallel.

Do not set up too many partitions
Partitions are the key to Kafka scalability, but that does not mean that you should have too
many partitions. Several customers have too many partitions, which in turn consumes all
resources from the server. Each partition in a topic uses a lot of RAM (file descriptors). The load
on the CPU will also get higher with more partitions since Kafka needs to keep track of all of the
partitions. More than 50 partitions for a topic are rarely recommended for Best Practice.

All CloudKarafka brokers have a very large number of file descriptors.

The balance between cores and consumers
Each partition in Kafka is single-threaded. Too many partitions will not reach its full potential if
you have a low number of cores on the server. Therefore, it is important to try to keep a good
balance between cores and consumers. It is not ideal to have consumers idling, due to fewer
cores than consumers.

Kafka Broker
The more brokers in a cluster, the higher the performance delivered since the load is spread
between all of your nodes. Replication is one of Kafka's strengths and a key component while
deciding how many brokers to include in a cluster in the minimum in-sync replicas setting.

Minimum in-sync replicas
The minimum number of in-sync replicas specify how many replicas that are needed to be
available for the producer to successfully send records to a partition. The number of replicas in
your topic is specified by you when creating the topic. The number of replicas specified can be
changed in the future.

A high number of minimum in-sync replicas gives a higher persistence, but on the other hand,
might reduce availability because the minimum number of replicas given must be available
before a publish. If you have a 3 node cluster and the minimum in-sync replicas are set to 3,
and one node goes down, the other two nodes will not able to receive any data. Only care about
the minimum number of in-sync replicas when it comes to the availability of your cluster and
reliability guarantees.

The minimum number of in-sync replicas has nothing to do with the throughput. Setting the
minimum number of in-sync replicas to larger than 1 may ensure less or no data loss, but
throughput varies depending on the ack value configuration.

Default minimum in-sync replicas are set to 1 by default in CloudKarafka. This means that the
minimum number of in-sync replicas that must be available for the producer to successfully send
records to a partition must be 1.

Partition load between brokers
A common error is that load is not distributed equally between brokers. It’s important to keep an
eye on the partition distribution and do re-assignments to new brokers if needed, to ensure no
broker is overloaded while another is idling.

Partition distribution warning in the CloudKarafka MGMT
The CloudKarafka MGMT interface will show a warning if or when a partition distribution is
needed. The partition distribution is also simplified in the MGMT interface, you can simply press
a button to distribute the data. The MGMT interface will check for existing partitions and spread
the data between them. If you are not using the CloudKarafka MGMT, we recommend you to
use the command-line tool to spread your data.

Do not hardcode partitions
Keys are used to determine the partition within a log to which a record is appended to. A
common error is that the same key is used for many records, making every record end up on
the same partition.

Make sure that you never hardcode the record key value.

Number of partitions
A higher number of partitions is preferable for high throughput in Kafka. Although, a high
number of partitions will put more load on the machines and might affect the latency of
messages. Consider the desired result and don't exaggerate.

Most customers of CloudKarafka have 3 nodes in the setup and the number of replicas set to 3.
You can have as many replicas as you have nodes in your system.

Default created topic
When sending a record to a non-existent topic, the topic is created by default
auto.create.topics.enable and is set to true by default in Apache Kafka.

This configuration can be changed so topics are not created if they do not exist. This
configuration can be helpful in minimizing mistakes caused by misspelling or miscommunication
between developers.

Default retention period
A record sent to a Kafka cluster is appended to the end of one of the logs. The record remains
in the topic for a configurable period of time, until a configurable size is reached or until the
specified retention for the topic exceeds. The message stays in the log, even if the record has
been consumed.

The default retention period can be changed in the CloudKarafka MGMT interface.

Record order in Apache Kafka
One partition will guarantee an unchangeable sequence of your log. Two or more partitions will
break the order, as the order is not guaranteed between partitions. Records sent within Apache
Kafka can be strictly ordered, even though your setup contains more than one partition. You will
achieve a strict order of records by setting up a consistent message key that sorts records in the
order specified, for example, user-ID. This guarantees that all records from a specific user
always end up in the same partition.

Please note that if the purpose of using Apache Kafka requires that all records must be ordered
within one topic, then you have to use only one partition.
More on this topic can be found in this blog post.

Number of Zookeepers
Apache Zookeeper is a stand-alone, centralized service, acting across nodes to relieve Kafka
from administrative duties. The controller in an Apache Kafka cluster is one of the brokers that
has the additional duty of electing new partition leaders when the existing leader fails. There can
be only one controller at a time and controller elections are coordinated by ZooKeeper.

Zookeeper requires a majority of servers to be functioning. If you, for example, have 5 servers in
your cluster, you would need 3 servers to be up and running for Zookeeper to be working.
I.e., you can afford to lose one Zookeeper in a 3 node cluster, and you can afford to lose 2
Zookeeper in a 5 node cluster.

Apache Kafka server type
What you need when setting up a Kafka cluster is lots of memory. The data sent to the broker is
always written to disk, but it also stays in the memory for as long as there is space to keep it in
there. More memory will give a higher throughput since Kafka Consumers try to read data from
the memory.

Kafka does not require high CPU, as long as there are not too many partitions running. A larger
plan in CloudKarafka equals a larger disk and a longer retention period for log messages since
you will not run out of disk space.

https://www.cloudkarafka.com/blog/2018-08-21-faq-apache-kafka-strict-ordering.html
https://www.cloudkarafka.com/blog/2018-08-21-faq-apache-kafka-strict-ordering.html

Performance optimization for Apache Kafka -
Consumers

By refining the consumer setup, you can avoid common errors and ensure your configuration
meets your expectations.

Consumers can read log messages from the broker, starting from a specific offset. Consumers
are allowed to read from any offset point they choose. This allows consumers to join the cluster
at any point in time.

A consumer can join a group, called a consumer group. A consumer group includes the set of
consumer processes that are subscribing to a specific topic. Consumers in the group then divide
the topic partitions fairly amongst themselves by establishing that each partition is only
consumed by a single consumer from the group. For instance, each consumer in the group is
assigned a set of partitions to subscribe from. Kafka guarantees that a message is only read by
a single consumer in the group.

Consumer Connections
Make sure all consumers in a consumer group have a good connection. Partitions are
redistributed between consumers every time a consumer connects or drop out of the consumer
group. This means that consumers in the group are not able to consume records during this
time. If one consumer in a group has a bad connection, the whole group is affected and will be
unavailable during every reconnect. A redistribution of partitions takes around 2-3 seconds or
longer. To make sure your setup is running smoothly, we strongly recommend securing the
connection between your consumers.

Number of consumers
Ideally, the number of partitions should be equal to the number of consumers, however, this
also depends on your use case.

● Number of consumers > number of partitions
If the number of consumers is greater, some consumers will be idling, i.e., this means
that you might be wasting client resources.

● Number of partitions < number of consumers
Some consumers will read from multiple partitions if the number of partitions is greater
than the number of consumers.

This is true in the scenario where there’s a high-bandwidth event flow in the topic. But
remember, not all use cases are like that. There are use cases where consumers would be
mostly idling, like while waiting for user-triggered events. There could also be cases where
having a single partition is completely fine, because of low event flow.

As mentioned before, the availability will be affected if one consumer has a bad connection. The
more consumers you have, the larger the risk is that one might drop and halt all other
consumers.

Apache Kafka and server concepts
Log
Write-ahead log, commit log, transaction log; Each partition
in Apache Kafka is a log - a time-ordered, append-only
sequence of data, from where data is removed only when a
given retention period has been exceeded. Records are
appended to the end of the log and can be read in order.
The log can also be rewound and records can be skipped
over for consumers to read from any point in the partition.

Record or Message
Data sent to and from the broker is called a record, a key-value pair. The record contains the
topic name and partition number. The Kafka broker keeps records inside topic partitions.
A record (also called a message) represents information such as lines in a log file, a row of
stock market data, an error message from a system or an event that is supposed to be handled.

Broker
The brokers in a Kafka cluster handle the process of receiving, storing and forwarding the
records to the interested consumers.

A Kafka cluster consists of one or more servers called Kafka brokers. It’s the processes or
servers in Kafka that process the messages. The Kafka broker is mediating the conversation
between different computer systems, like a queue in a message system.

Topics
Records are grouped into categories called topics. A Topic is a category/feed name to which
records are stored and published. Example: LogMessage or StockMessage.

If you wish to send a record you send it to a specific topic and if you want to read a record you
read it from a specific topic.

Retention period
Records published to the cluster will stay in the cluster until a configurable retention period has
passed. Kafka retains all records for a set amount of time or until a configurable size is reached.
The consumption time is not impacted by the size of the log.

Producer, Producer API
The processes that publish records into a topic are called producers and are using the producer
API.

Consumer, Consumer API
The processes that consume records from a topic are called consumers and are using the
consumer API.

Partition
Topics are divided into one or more partitions, which can be replicated between nodes.
Partitions are the unit of parallelism in Kafka. Partitions allow records in a topic to be distributed
to multiple brokers. A topic can have any number of partitions.

Offset
Kafka topics are divided into a number of partitions, which contain records in an unchangeable
sequence. Each record in a partition is assigned and identified by its unique offset.

Consumer group
A consumer group includes the set of consumers that are subscribing to a specific topic. Kafka
consumers are usually a part of a consumer group. Each consumer in the group is assigned a
set of partitions, from which they are able to consume messages. Each consumer in the group
will receive records from different subsets of the partitions in the topic.

ZooKeeper
Zookeeper is a stand-alone, centralized service, acting across nodes to relieve Kafka from
administrative duties. Zookeeper is responsible for controller elections, the configuration of
topics, handling access control lists and cluster memberships.

Instance (“As in a CloudKarafka instance”)
When a CloudKarafka plan is created, you get what we call CloudKarafka instance or an
instance of Apache Kafka. It could be a dedicated instance, an Apache Kafka broker, or a
shared instance, which gives you five dedicated topics on a shared plan.

Replication, replicas
Replication is the process of copying records from the leader replica to follower replicas.
Followers periodically (every 500ms by default) send fetch requests to the leader who then
responds with a batch of records. Replication in Apache Kafka happens at the partition level.

	apache-kafka-beginner-guide
	apache-kafka-ebook-cover

	CloudKarafka e-book(2)

